白癜风专家郑华国 http://m.39.net/pf/a_4305597.html提到爱因斯坦,很多人的第一反应就是E=mc2。
没办法,质能方程看起来“太简单”了:左边的E代表能量,右边的m代表质量,c是光速,都是中学生就能看懂的物理量。而且,这个方程看起来太神奇了,它告诉我们一般物体都蕴含了巨大的能量,原子弹那毁天灭地的力量就是最好的证明。
又简单又神奇,不传播你传播谁?
但是,很多人容易忘记一件事:质能方程是狭义相对论的结论,需要站在狭义相对论的立场上才能精准地把握它。否则就容易望文生义,再类比、推广一下,后果就很可怕了。
比如,有人认为质能方程的意思是“质量可以转化成能量”,或者说“物质可以转化成能量”。延伸一下,物质代表“有”,能量代表“无”,质能方程暗示着“有无相生”,接下来欢迎进入太极物理频道……
也有人认为质能方程是在说“质量是能量的一种形式”。延伸一下,我们的物质本质上都是能量,一切都是能量,一切都是虚无,色即是空,接下来欢迎进入相对论佛学频道……
这种误解以及可怕的延伸,我还可以列很多。要不是因为亲身见识了各种各样的解读,我真难以想象质能方程会有如此丰富的“内涵和外延”。
不过,想想也不奇怪。毕竟谁都可以谈一下质能方程,谈的人多了,想法自然就多了。而且,质量亏损这个名字也很容易把大家往歪路上引。
那么,我们就来好好看一看质能方程,看看E=mc2到底是怎么回事,看看它是如何从狭义相对论推导出来的,以及如何正确地对待质能方程。
01从狭义相对论出发
因为质能方程是狭义相对论的产物,所以,想搞清楚质能方程就得先搞清楚狭义相对论。
什么是狭义相对论呢?
我在《相对论诞生:爱因斯坦是如何创立狭义相对论》里详细描述了狭义相对论的诞生过程,看完文章的朋友肯定都知道:狭义相对论的核心是洛伦兹协变性。
它跟牛顿力学的核心区别是:狭义相对论的物理定律在洛伦兹变换下保持数学形式不变,而牛顿力学的物理定律在伽利略变换下保持数学形式不变。至于尺缩、钟慢、双生子之类的效应,都是狭义相对论的一些简单结论。
质能方程E=mc2也是这样。
也就是说,只要我们认为物理定律应该在洛伦兹变换下保持数学形式不变(狭义相对论精神),我们就能推出质能方程E=mc2,而不需要其它的假设和限制。
因此,只要狭义相对论成立,质能方程就成立,它的适用范围是极广的。有些朋友认为质能方程只在核反应里才有效,这显然不对,因为狭义相对论并不是只在核反应里才有效。
那狭义相对论在哪些地方成立呢?是不是像有些人认为的,狭义相对论只在高速(近光速)情况下成立,在低速情况下就必须使用牛顿力学?
不不不,也不是这样的逻辑。
狭义相对论跟牛顿力学并不是互补的关系。牛顿力学只在低速时适用没错,但狭义相对论不仅在高速时适用,在低速时也同样适用。而且,在低速时它的精度比牛顿力学还要高。
也就是说,狭义相对论不管在低速、高速时都成立,牛顿力学只是狭义相对论在低速情况下一个还算不错的近似。既然狭义相对论的适用范围那么广,质能方程的适用范围自然也很广,而不是只局限在核反应里。
但是,爱因斯坦并不需要知道核反应里质量和能量的关系,他直接从狭义相对论的基本原理出发,就无可辩驳地得到了E=mc2。这是最让人震惊的地方,也是理性的巨大胜利。
接下来,我们就来看一看,看看为什么只要坚持狭义相对论的基本原理,只要坚持物理定律在洛伦兹变换下保持数学形式不变(洛伦兹协变性),我们就能得到质能方程E=mc2。
0动量守恒定律
再来看看E=mc2,公式的左边出现了能量E,看到能量我们就会想起能量守恒定律。既然是定律,那我们就要问了:你可不可以在洛伦兹变换下保持数学形式不变啊?如果可以,那就欢迎进入狭义相对论的世界;如果不行,那就从哪来回哪去,一边玩去。
不过,考虑到能量的种类太多太杂,我们先来看看更简单的动量守恒定律。
在牛顿力学里,动量的定义是mv(质量乘以速度),在不受外力或合外力为0时,两物体碰撞时动量守恒。
比如,两个质量都为m的小球以相等的速度v迎面撞上,碰撞后两个小球黏在了一起。如果以某个小球的运动方向为正(假设为向右),那这个小球的动量就是mv,另一个小球的动量就是-mv,碰撞前动量之和就是mv+(-mv)=0。
根据动量守恒定律,碰撞后小球的总动量也应该为0。而碰撞后它们又黏在了一起,变成了一个质量为m的大球,所以碰撞后的速度就必然为0(不然总动量就不为0了)。
两个质量相等、速度相反的小球迎面相撞,碰撞后两个小球黏在一起并保持静止。这个事情很容易理解,不管是用牛顿力学的动量守恒定律来计算,还是根据常识来判断都没错。
但是,我们